A Note on the Product of Complementary Principal Minors of a Positive Definite Matrix

Ian S. Murphy
Department of Mathematics
University of Glasgow
Glasgow, Scotland

Submitted by Richard A. Brualdi

Abstract

An upper bound is given for the product of complementary principal minors of a positive definite matrix in terms of its eigenvalues.

Let H be an $n \times n$ positive definite matrix, (i.e., H has real entries, $H^{T}=H$ and all the eigenvalues of H are positive). Let the eigenvalues of H be $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, where $\alpha_{1} \geqslant \alpha_{2} \geqslant \cdots \geqslant \alpha_{n}$. Let r be an integer with $1 \leqslant r \leqslant n-1$, and let H be partitioned in the form

$$
H=\left[\begin{array}{ll}
H_{1} & H_{2} \\
H_{2}^{T} & H_{3}
\end{array}\right]
$$

where H_{3} is $r \times r$.
In this situation, a result of E. Fischer [3] gives a lower bound for the value of the product det $H_{1} \cdot \operatorname{det} H_{3}$, namely,

$$
\operatorname{det} H_{1} \cdot \operatorname{det} H_{3} \geqslant \operatorname{det} H \text {, }
$$

or equivalently, in terms of the eigenvalues of H,

$$
\operatorname{det} H_{1} \cdot \operatorname{det} H_{3} \geqslant \alpha_{1} \alpha_{2} \cdots \alpha_{n}
$$

The purpose of this note is to give an upper bound for det $H_{1} \cdot \operatorname{det} H_{3}$ in terms of the eigenvalues of H. The proof makes use of an inequality in the theory of least squares estimation proved by Bloomfield and Watson [2] and by Knott [4].

First we quote the following lemma with the intention of applying it to a positive definite matrix.

Lemma. Let A be a nonsingular $n \times n$ matrix. Let r be an integer with $1 \leqslant r \leqslant n-1$. Let A and A^{-1} be partitioned as

$$
A=\left[\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right] \quad \text { and } \quad A^{-1}=\left[\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right]
$$

where A_{4} and B_{4} are both $r \times r$. Suppose that A_{1} is nonsingular.
It then follows that

$$
\begin{equation*}
\operatorname{det} A_{1}=\operatorname{det} A \cdot \operatorname{det} B_{4} \tag{1}
\end{equation*}
$$

Proof. See Aitken [1, p. 99].
The following is the main result.

Theorem. Let H be a positive definite $n \times n$ matrix with eigenvalues $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, where $\alpha_{1} \geqslant \alpha_{2} \geqslant \cdots \geqslant \alpha_{n}$. Let r be an integer with $1 \leqslant r \leqslant n-1$. Let H be partitioned as

$$
H=\left[\begin{array}{ll}
H_{1} & H_{2} \\
H_{2}^{T} & H_{3}
\end{array}\right]
$$

where H_{3} is $r \times r$. Let $q=\min (r, n-r)$. Then

$$
\begin{equation*}
\operatorname{det} H_{1} \cdot \operatorname{det} H_{3} \leqslant \alpha_{q+1} \alpha_{q+2} \cdots \alpha_{n-q} \prod_{k=1}^{q}\left(\frac{\alpha_{k}+\alpha_{n-k+1}}{2}\right)^{2} . \tag{2}
\end{equation*}
$$

Proof. Let $D=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$. It then follows that there exists a real orthogonal matrix U such that $U H U^{T}=D$, so that $H=U^{T} D U$. Furthermore we can partition U as $\left[U_{1} U_{2}\right.$], where U_{1} is $n \times(n-r)$ and U_{2} is $n \times r$, with the result that

$$
H=\left[\begin{array}{ll}
H_{1} & H_{2} \\
H_{2}^{T} & H_{3}
\end{array}\right]=\left[\begin{array}{cc}
U_{1}^{T} D U_{1} & U_{1}^{T} D U_{2} \\
U_{2}^{T} D U_{1} & U_{2}^{T} D U_{2}
\end{array}\right]
$$

Also, notice that $H^{-1}=U^{T} D{ }^{1} U$, with the result that

$$
H^{-1}=\left[\begin{array}{cc}
U_{1}^{T} D^{-1} U_{1} & U_{1}^{T} D^{-1} U_{2} \tag{3}\\
U_{2}^{T} D^{-1} U_{1} & U_{2}^{T} D^{-1} U_{2}
\end{array}\right]
$$

Then,

$$
\begin{aligned}
& \operatorname{det} H_{1} \cdot \operatorname{det} H_{3}=\operatorname{det} U_{1}^{T} D U_{1} \cdot \operatorname{det} U_{2}^{T} D U_{2} \\
& =\operatorname{det} H \cdot \operatorname{det} U_{2}^{T} D^{-1} U_{2} \cdot \operatorname{det} U_{2}^{T} D U_{2} \quad[\mathrm{by}(1) \text { and (3)] } \\
& =\alpha_{1} \alpha_{2} \cdots \alpha_{n} \operatorname{det} U_{2}^{T} D^{-1} U_{2} \cdot \operatorname{det} U_{2}^{T} D U_{2} \\
& \leqslant \alpha_{1} \alpha_{2} \cdots \alpha_{n} \prod_{k=1}^{q} \frac{\left(\alpha_{k}+\alpha_{n-k+1}\right)^{2}}{4 \alpha_{k} \alpha_{n-k+1}}, \\
& \text { [where } q=\min (r, n-r) \text {, on using } \\
& \text { the result of Knott [4, p. 129]] } \\
& =\alpha_{q+1} \alpha_{q+2} \cdots \alpha_{n-q} \prod_{k=1}^{q}\left(\frac{\alpha_{k}+\alpha_{n-k+1}}{2}\right)^{2},
\end{aligned}
$$

as required.

Remark. Equality is possible in (2) for each admissible pair of values of n and r. For example, if $n=6$ and $r=2$, take H to be the matrix

$$
\left[\begin{array}{cccccc}
\frac{1}{2}\left(\alpha_{1}+\alpha_{6}\right) & 0 & 0 & 0 & \frac{1}{2}\left(\alpha_{1}-\alpha_{6}\right) & 0 \\
0 & \frac{1}{2}\left(\alpha_{2}+\alpha_{5}\right) & 0 & 0 & 0 & \frac{1}{2}\left(\alpha_{2}-\alpha_{5}\right) \\
0 & 0 & \alpha_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & \alpha_{4} & 0 & 0 \\
\frac{1}{2}\left(\alpha_{1}-\alpha_{6}\right) & 0 & 0 & 0 & \frac{1}{2}\left(\alpha_{1}+\alpha_{6}\right) & 0 \\
0 & \frac{1}{2}\left(\alpha_{2}-\alpha_{5}\right) & 0 & 0 & 0 & \frac{1}{2}\left(\alpha_{2}+\alpha_{5}\right)
\end{array}\right] .
$$

This matrix is positive definite, it has $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ as its eigenvalues, and

$$
\operatorname{det} H_{1} \cdot \operatorname{det} H_{3}=\alpha_{3} \alpha_{4}\left(\frac{\alpha_{1}+\alpha_{6}}{2}\right)^{2}\left(\frac{\alpha_{2}+\alpha_{5}}{2}\right)^{2}
$$

I am grateful to Professor S. D. Silvey for drawing the papers [2] and [4] to my attention.

REFERENCES

1 A. C. Aitken, Determinants and Matrices, Oliver and Boyd, 1959.
2 P. Bloomfield and G. S. Watson, The inefficiency of least squares, Biometrika 62:121-128 (1975).
3 E. Fischer, Über den Hadamardschen Determinantensatz, Arch. Math. Phys. (3) 13:32-40 (1908).
4 M. Knott, On the minimum efficiency of least squares, Biometrika 62:129-132 (1975).

Received 26 January 1981; revised 2 November 1981

