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ABSTRACT 

An upper bound is given for the product of complementary principal minors of a 
positive definite matrix in terms of its eigenvalues. 

Let H be an n X n positive definite matrix, (i.e., H has real entries, 
H T = H and all the eigenvalues of H are positive). Let the eigenvalues of H be 

ai, a z,...,a,, wherear>cuz>... >a,.Letrbeanintegerwithl<r<n-1, 
and let H be partitioned in the form 

H= 
Hl H2 

[ 1 H,T H, ’ 

where H3 is r X r. 

In this situation, a result of E. Fischer [3] gives a lower bound for the 
value of the product det H,.det H,, namely, 

det H,.det H, 2 det H, 

or equivalently, in terms of the eigenvalues of H, 

det H,.det H, 3 cx1a2. . . a,. 

The purpose of this note is to give an upper bound for det H,.det H, in terms 
of the eigenvalues of H. The proof makes use of an inequality in the theory of 
least squares estimation proved by Bloomfield and Watson [2] and by Knott 

[41* 
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First we quote the following lemma with the intention of applying it to a 
positive definite matrix. 

LEMMA. Let A be a nonsingular n X n matrix. Let r be an integer with 
l<r<n-1. LetAandA-‘bepartitionedas 

A= I ;’ 4 1 and A-‘= [ 4 4 3 4 B3 4 1 ’ 

where A, and B4 are both 
It then follows that 

r X r. Suppose that A, is nonsingular. 

detA,=detA.detB,. 0) 

Proof See Aitken [l, p. 991. 

The following is the main result. 

THEOREM. Let H be a positive definite n X n matrix with eigenvalues 

al> a 2>“‘, a,,,wherea,>cu,>..* >a,,. Let r be an integer with 1 G r G n - 1. 
Let H be partitioned as 

H= 
Hl Hz 

[ I H,T H, ’ 

where H, is r X r. Let 9 = min(r, n - r). Then 

Proof. Let D = diag(ar,, aa,. . . , a,). It then follows that there exists a real 
orthogonal matrix U such that UHUT = D, so that H = UTDU. Furthermore 
we can partition U as [Vi U,], where U, is n X(n - r) and Us is n X r, with 
the result that 

H= 
Hl 4 

[ I[ U,‘DU, UirDU, 

H,T H, = U.DUl 1 U,‘DU, ’ 
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Also, notice that H-’ = UTD-‘U, with the result that 

Vp’V, 1 V,‘D-‘Uz ’ (3) 

Then, 

det H, * det H, = det VTDV, . det VlDV, 

= det H.det V,TDp’V,.det V,‘DV, by (1) and (3)l 

=alaB"' cy,det V,TDp’V,.det V,‘DV, 

G(Y,(Y,-.. 
9 bk + %k+lY 

% rI 
k=l 4aka,-k+l ’ 

[where 9 = min(r, n - r ), on using 
the result of Knott [4, p. 12911 

as required. n 

REMARK. Equality is possible in (2) for each admissible pair of values of 
n and r. For example, if n = 6 and r = 2, take H to be the matrix 

S%+.,) 0 0 0 G,-%3) 0 +(a2+a,) 0 0 0 1(.,0.5) 
0 0 

ff3 
0 0 0 

i(a,YqJ 0 0 0 0 a4 0 +I+%) 0 0 0 

0 *(a2-a5) 0 0 0 h.-t%) 

This matrix is positive definite, it has cr,, (Ye,. . . , a, as its eigenvalues, and 
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